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SUBSONIC EDGES IN THIN-WING AND SLENDER~-BODY THEORY

By Milton D. Ven Dyke
SUMMARY

A simple technique is presented for correcting the results of thin-
wing theory near round or sharp edges at which the normal component of
free-stream velocity is subsonic. The flow in planes normal to such
edges is actually brought to rest, but thin-wing theory instead predicts
infinite velocities. Furthermore, corresponding to the circulatory flow
around leading edges, thin-wing theory predicts additional singularities
that do not actually exist for round edges and exceed their true strength
for sherp edges. All these singulasrities grow worse if one Fformally
attempts to improve the solution by iteration. To correct these defects,
the formal thin-wing solution is here rendered uniformly valid by compar-
ing with exact solutions for simple profiles having the same nose shape.

In this way Lighthill's rule for correcting the surface speed on round-
nosed airfoils in incompressible flow is extended to higher approximations,
to compressible flow, to three-dimensional wings, and to sharp edges.
Corresponding resulis for slender bodies of revolution are considered
briefly; in particular, the rules for round-nosed airfoils in incompressi- _
ble flow are shown to apply a2lso to round-nosed bodies of revolution. -

INTRODUCTION

The linearized theory of thin wings, which has proved so fruitful
for both subsonic and supersonic flows, is known to fail near leading and
trailing edges if the component of free-stream veloclty normal to the edge
is subsonic. The flow in a plane normal to such an edge is actually
brought to rest at some point near the edge, but linearized theory predicts
infinite velocities instead.l Furthermore, there is flow around the lead-
ing edge except at one angle of attack, and linearized theory then predicts
en additional singularity that does not actually exist for round edges
and exceeds its true strength for sharp edges.

These local failures are sometimes of little practical consequence,
since the singularities are integrable and the 1ift is determined correct
to a first spproximation. However, it has long been known that special

LAt round edges, linearized theory predicts only finite speeds on the
surface, but the velocity of the stream approaching the stagnation point
becomes infinite.
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attention must be pald %o the singularity in calculating the drag of thin
lifting wings (ref. 1). More recently, R. T. Jones has pointed out that
the same is true for nonlifting wings and has shown how to account for
the singularity in evaluating drag (ref. 2). In any case, the calculated
velocities and pressures are incorrect near such an edge.

If one attempte to refine the theory by formelly iterating upon the
first approximation, the local failure leads to serlous difficulties.
In incompressible flow, the singularities are found to increase in
strength at each stage of the iteration, so that the solution, though
improved elsewhere, becomes increasingly inaccurate near the edge. More-
over, ror round edges these higher terms give nonintegreble contributions
to the aerodynamic forces. Even more serious difficulties may arise in
compressible flow, where the infection spreads in some cases, so that the
formal second approximation is incorrect not only at the edges but over
the entire airfoil surface.

The remedy for all these difficulties is clearly to base the itera-
tion upon & first approximetion that 1s vallid .even near the edges. This
would appear to requlre abandoning at the outset the assumption of small
disturbances, which so greatly simplifies analysis. Fortunately, however,
Lighthill has found (ref. 3) that for round edges in incompressible flow
all the results of small-disturbance theory can be salvaged. He shows
that a very simple rule converts the formal second-order solution of thin-~
airfoil theory into-an approximation that is uniformly valid near the
edge.

Lighthill's result follows from application of his general technique
for rendering approximete solutlons to physical problems uniformly valld
(ref. 4). This consists in determining progressively with each approxi-
mation a straining of the coordinates that ensures uniform convergence.
For a round-nosed airfoil in incompressible flow the stralning is, to the
first approximation, & contraction of abscissas that shifts the leading
edge by half its radius, as was noted by Munk in 1922 (ref. 5). The uni-
formly valid solution is then the same function of the strained coordi-
nates as the thin-airfoil sclution was of the unstrained coordinates.

It is not yet clear how far Lighthill's technique can be extended.
Fox has indicated (ref. 6) that it fails for higher approximations, other
nose shapes, or compressible flows, but 1n a recent series of seminars
at California Institute of Technology, Tslen suggested that proper appli-
cation of the technique will lead to success.: In any case, a quite 4dif-
Terent technique is used here, which is particularly suited to the study
of edges, and for that special problem is simpler than Lighthill's general
procedure. It consists in comparing the exact and thin-wing solutions
for simple shapes that approxlmaete the alrfoil in the vicinity of the
edge. Thus Lighthill's rule for round noses is reproduced by considering
incompressible flow past a semi-infinite parsbola. This comparison tech~
nique is then readily extended to higher approximations, compressible '
flows, three~dimensionsl wings, sharp edges, and slender bodies of revo-
lution. Attention is confined here to the practical matter of calculating
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surface speeds, but the whole flow field can be corrected by the same
method. The technique is applied here only to edges that are round
(finite radius of curvature) or sharp (finite slope), since these occur

on most existing profiles. However, the procedure can, in principle, be
extended to other edge shapes and to slender bodies of other than circular
cross section.

The analysis of this paper is intuitive in splrit. Where convenient,
some of the results have been deduced by appeal to physical reasoning.
It 1s presumed that at these points the analysis could be bolstered by
more rigorous mathemstical arguments.

The guthor is indebted to R. T. Jones for many helpful discussions
throughout the course of this work.

ROUND-NOSED AIRFOILS IN INCOMPRESSIBLE FLOW

The technigue to be used can be introduced by restricting attention
Pirst to an uncembered two-dimensional airfoll at zero angle of attack in
incompressible flow. Thin-airfoil theory breaks down in the vieclnity of
the leading edge. There, a round-nosed airfoil can be approximated by a
parsbola. Accordingly, consider the exact velocity distribution over a
parabola of leading-edge radius O 1in & uniform stream parallel to 1ts
axis (sketch (a)). The flow speed on
the surface can be found by conformal
mapping, or simply by Munk!s rule
(ref. T) that the surface velocity on
any ellipsold subJjected to uniform
flow along a principal axis is the /4

“ [— x
projection of the maximum velocity
onto the plane tangent to the surface.
For a parabola the maximum is the free-

stream velocity, so that with x
measured downstream from the nose the Sketch (a)

surface speed ratio is
1/2
(x—-—x - ) (1)
+ p/2

(A1l symbols are defined in the Appendix.) Expanding this expression for
small p/x yilelds the formal series

Y=212px

——

cle

a P
—E_=l—H+"' (2)
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and this must be the series that would be given by thin-airfoil theory.
(It is actually the second-order thin-airfoil solution - the first-order
term being zero for a parabola - since the nose radius of any profile
varies with the square of its thickness.) It is clear how the spurious
singularities of thin-airfoil theory arise at the leading edge.

The formal second-order thin-airfoil solution "q; for a parabola

can be converted into an approximation ¢ that is uniformly valid by
multiplying it by the ratio of the exact result to the series expansion:

1/2
<——~—£—-> llq“
X + 0/2 2

p U
l"—-+.oo
k

X

(3a)

e
]

S8implifying this insofar as possible, reteining only terms of order p/x,
gives the rule

<l

1/2 Ilqll
= (X —2 ., P 3b)
<;:+ 0/2:) <‘TJ - bx (

It can now be argued that this rule, derived for a parabola, applies
with some degree of approximation to any uncambered airfoil of finite
leading-edge radius P at zero angle of attack. Near the leeding edge,
where the flow disturbances are large, the exact speed on any airfoil is
nearly that on & pargbola of the same nose radius; hence, the rule pro-
vides a first approximation to the disturbances there. Far from the edge,
the disturbances are small and, in geheral, different from those for a
parabola; there the ratio in equation (3a) 1s essentially unity, so that
the rule reproduces.the second-order solution for the airfoil, as it
should. Hence, the rule yields an approximation that is uniformly valid.
(It is not, of course, valid near a second edge; combined edges will be
considered later.)

The rule clearly applies also to
cambered airfoils at the "ideal" angle
of attack for which the stagnation
point coincides with the vertex. How-
ever, at other angles of attack the
flow field inclvdes a component of
circulatory flow around the edge
(sketch (b)). Because of the linear
nature of incompressible flow, this
component can be treated separately.
The amount of this component is pro-
portional to the sine of the angle of

Sketch (b)



NACA TN 3343 5

attack oy measured from the ideal
angle. The thin-airfoil series for
this component can be corrected by
comparison with the circulatory flow
past a parabola (sketeh (¢)). Con-
formal mepping or Munk!s rule® gives
the speed on the upper and lower
surfaces of the parsbola (counted
positive away from the vertex) as

1/2

=10

=tk sin ao( L (L) Sketch (c)

X + D/

Here the factor k 1s a coefficlent of order unity that relates the cir-
culatory flows on the parsbola and the actual airfoil; it depends on the
entire airfoil shape (and the tralling-edge condition), but its value is
not required here. Expanding this expression for small p/x yielde the
formal thin-alrfoil series for the circulatory component, which is, to
second order in thickness and angle of attack,

" n

al ket

= %
U A X

(5)

As before, the ratio of the exact result to its series expansion is a
factor that serves to correct the thin-airfoil solution for any round-
nosed airfoll. Hence the rule for the circulatory component is

() @

Now it happens that this is essentlally the seme as the rule for the
other component (eq. (3b)). Consequently, the two rules can be combined.
It follows that the rule of equation (3b) applies to a round-nosed air-
foil at any angle of attack. It is, in fact, precisely Lighthill's rule,
which he found using his technique for rendering approximate solutions
uniformly valigd.

o) Jla]]

The accuracy of this rule near the nose of an airfoll depends upon
how closely the nose is approximated by a parabola. Lighthill has

®Munk's rule can be used here by recognizing that the circulatory
flow about a parabola is identical with the 1limit of the crossflow past
an ellipse as its thickness ratio vanishes.
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considered wirfolls described by analytic arcs; which means that near the
leading edge e

2

¥y = €(iFOXl/2 + Ci1x ilea/ + o e ) (7)

€ being a small parameter and the PFp and Cp  coefficlents of order unity
assoclated with thickness and camber, respectively; also, the angle of
attack is assumed to be of order €. Now the example of the parabola
shows that the problems of nonuniformity are confined to, a region propor=-
tional to the leading-edge radius, that is, in which x/ is 0(e2®). 1In
this region the analytic airfoils of equation (7) coincide with parabolas
except for terms of 0(x1/2), which is O0(€). It seems reasonable to assert
that the surface speed will be approximated to the same order of accuracy
as 1s the airfoil shape. This means that applying the rule to the second-
order thin-airfoil solution yields a uniformly valid solution that is in
error by O(€) near the leading edge (though of course only by 0(e®) far
awey). This agrees with Lighthill's conclusion, based on more rigorous
anslysis. However, initially uncembered airfoils (for which Ci = 0) are
parabolic except for terms of O(x) = 0(e2), so that in this case the
solution rendered uniformly valid is in error by at most O(€2) near the
nose.

It would at first sight seem appropriate to say that Lighthill's
rule yields a solution for analytic airfoils correct only to zero order
near the nose (first order in the absence of camber), since only terms
of 0(1) are found correctly, and this is the order of the undisturbed
stream. However, this occurs where the perturbations themselves are
0(1) - for example, the surface speed one leading-edge radius from the
nose is 0.707 of the free stream ~ so that the leading term in the veloc-
ity disturbance  (eand hence in ‘the pressure coefficient) is given correctly.
With this in mind, we shall say that Lighthill's rule renders the thin-
alrfoll solution valid to first order near the nose for cambered airfoils

and to second order for Iinitially uncambered dnes.

If only first-order terms are retailned, Lighthill's rule becomes

simply
e e
U X + p/ U.

This converts the linearized solution into a uniformiy valid first
approximation. Results differing from .this only by higher-order terms
were glven earlier by Goldstein (Approximation II of ref. 8) and by
Riegels (ref. 9). It will be seen later that Riegels! form happens to be
both simpler and moré accurate than Lighthiil's.
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It seems desirable to refine the rule so that it is correct to
second order = that is, to O(€2) - even near the nose of a cambered
airfoil. This is readily done by
considering flow past a “cambered"
or sheared parsbola (sketch (d)) given
by the first two terms of equation (7).
Shearing transforms a parabola into
another parsbola whose vertex and nose
radius are changed only to higher
order. Hence the previous rule of
equation (3b) applies if x is

replaced by the oblique abscissa <. ———
Now it is easily shown that for a
point on the surface of the parabola Sketch (4)

where €(C; 1s the initial slope of the camber line. Hence the rule
becomes

9z _ < x + €C14/2px )1/2 ("‘12 + 2 (10)
U X + p/é t €Cy ,/2px U bx

where, again, the upper and lower signs pertain to the upper and lower
surfaces of the airfoil.

This rule, which renders the thin-airfoll solution uniformly valid
to second order, is probably all that will ever be required in practice.
However, it can easily be extended still further if necessary. For
example, consider an uncambered analytic airfoil. Its nose can be
approximated by sn ellipse except for terms of 0(x5/2), which is 0(e5)
in the region of interest. Hence, the following rule, derived from con-
sideration of the exact flow past an ellipse, renders the thin-airfoil
solution uniformly valid to fourth order:®

n, 1 "3 2
e A Mai 1, _ €2 [Ty )
T + '2- T 'g?\ > 3 A= _i!-_ -t 6F0F1 (ll)

-4 1
U J1+2A <:

The fourth-order result for cambered airfoils can be obtained from this
using the fact that a sheared ellipse is an ellipse; this will be given
later when alternative forms are considered.

3An ellipse corresponds to Fy<0; application of this rule to cases
for which F;>0 rests on an appeal to the principle of analytic continu-
ation.
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From these rules, corresponding rules follow at once for any of the
velocity components. For example, Lighthill's rule for the horizontal
velocity component at the surface can be deduced directly from equa-
tion 3(b):

n.n
i X Uz o]
= = it —_—
U x + p/2 < U 2x> (12)

In calculating pressures from veloclties, the full Bernoulli equation
must be used since the disturbasnces are not small.

REMARKS ON THE METHOD

The essence of the technigue used here is to consider the exact
solution for some simple shape that approximates the airfoil in the
vieinity of its edge, where thin-airfoil theotry breaks down. The formal
thin-sirfoil solution can then be corrected by multiplying it by the
ratio of this locally exact solution to its series expansion, simplifying
insofar as possible. This means that the rules are essentially multipli-
cative in nature. The process of simplification tends to conceal this
Tact, so that they appear to be at least partially additive.

The multiplicative nature of the rules is apparent from the view-
point of conformel mepping. Thin~-airfoil theory gives a formal series
for the mapping of the profile onto a straight line, which falls near a
round nose. With Lighthill's rule, thin-airfoil theory is relied upon
only to mep the profile onto an initially osculating parabola. The radi-
cal in equation (3b) is the speed on the parabola; the remaining factors
represent the speed ratio associated with this intermediste mapping, by
which it is %o be multiplied.

From another point of view, Lighthill's rule implies that the airfoil
is represented by sources distributed over the surface of a parabola,
rather than along a straight line. To second order, the perturbations
induced by the sources are proportional to the local speed of the basic
flow past a parsbola, which indicates again the multiplicative nature of
the rules. This viewpoint remalns valid in the subsequent extensions to
subsonic and axlally symmetric flows, where conformal mapping is inep-
pliceble.

ROUND-NOSED ATRFOILS IN SUBSONIC FLOW

The preceding results can be extended to compressible flow by using
solutions for subsonic flow past paraboles and ellipses. Although no

exact solutions are known, it seems that adequate approximations can be
found so long as the flow is purely subsonic.
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At stagnation points in subsonic flow, thin-airfoll theory predicts
infinities of the same order as in Iincompressible flow. Although these
infinities can be avoided by using the exact condition of tangent flow
at the surface (which in incompressible flow gives the true solution), the
result is nevertheless incorrect near stagnation points. Thus, Hantzsche
and Wendt (ref. 10) work with the perturbation stream function and impose
the exact tangency condition by means of conformal mapping, but even thelr
first epproximation gives not zero speed at stagpnation points but a veloc-
ity u/U = -M2(1 - M®)™1/2, This is primerily a defect associated with
the stream function, but even using the veloclty potential in the same
way gives results which are no more than qualitatively correct near stag-
nation edges.

An slternative procedure for treating subsonic flows by successive
epproximations is the Janzen-Rayleigh expansion in powers of M2. The
two methods are known to complement each other, being, in fact, simply
different series representations of the true solution. In particular,
the Janzen-Raylelgh result 1ls most accurate near stagnation points, where
thin-airfoil theory breaks down. It 1s therefore suited for the present

purpose.

Consider agein an uncambered round-nosed airfoil at zero angle of
attack. Probaebly the second-order thin-airfoil solution is the most that
will be treated in practice; then it is enough to consider subsonic flow
along the axis of a parasbola (sketch (2)). Imai has recently calculated
(ref. 11) the Janzen-Rayleigh solution for a parabola including terms
in M?%*, and has given the surface speed in essentially the form

= e}

= £, + M2f1 + (7 + 1M, + MPfg + O(M°) ' (13)

Here the £, are inereasingly complicated functions of x/p (wvhere p
is the nose radius), fp being the incompressible result of equation (1).

Far behind the nose, Imai'’s result reduces %o

L e +'M‘*> + o(M%, p3/x3) (1ka)

This should agree to this order with thin-airfoil theory and indeed it
does; second-order thin-airfoil theory (ref. 12) gives

1n_1

@ _ . _P 20y + 1M + 42 o o
= l-p|l+H Yy + 0(P=/x%) (1hb)
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and. the reduced result of Imei, equation (1ka), is just the curtailed
expension of this in powers of M=, Comparing these two expressilons _
suggests a modification of the Janzen-Rayleigh solution that will include
the full second-order thin-airfoil result: :

' 2 4
% = Q(% ) M) = fo + l‘g—z f1 + (7 + 1)%; £z + M*(fg - f1) + O(M®)  (15e)

where, according to Imai's solution,* -

1/2
fq = (___x____)l = sin 2 where 6 = cos™t < - 22X
° x + P/2 2’ - P+ 2x

- -]—‘<cos -e-) [2 tan g . 2 sin 6 log (2 cos -6-> + 6 cos 6]
L 2 2 - 2

. s - . .
- .313 cos %) [h tang- - 13 sin 9"_1.- h(sina 6 - 3 sin 26)

1

Hh
N
]

log (2 cos g—) + 26(cos 8 -~ 3 cos 26)]

fq = f1 = L7 2
g = 11 = cos ——-— sin9+—6-sin26+7sin26

log<2 cos -6—> - %(5 - 12 cos 6 + T cos 20) +

>(150)

2

. | _
%-(3 sin 0 + 8 sin 20 + 3 sin 30) +

:—EL-(sin 6 - 4k sin 26 - 3 sin 36)log® <2 cos g>+

%(5 cos 8 + 8 cos 268 + 3 cos 36)log<2 cos —g—) -

e
2(2 cos 6 + cos 'ee)f 1og<2 cos g) dcp} )

expression for fl, the correction has been confirmed by Prof. Imsi.
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This modification seems to be a natural one; for example, the combination
(fg - f1) is simpler than its originasl counterpart fs. A short table

of the function Q(x/p,M) calculated from this approximationS is given
below for v = 7/5.

X

M /e O] 0.25 0.5 1 2 5

0 0} 0.57T7k } 0.707L 1 0.8165] 0.894k | 0.9535
A ol .5554)1 6871 .8007) .8831| .9hTh
.5 {0} .5h09 | .6ThO| .T902| .8751} .9430
6 {0} .5211) .6556 | .TThE} 862k} .9355
T Yot Jhor0 | 62961 .Tho2| .8396| .9210
B8 {ot .b888 1| .5993 | .7023%t .7887 | .88Lk

Applying the argument used before to equations (14) and (15) shows
that the second-order thin-sirfoil solution for any uncambered analytic
profile of nose radius © in subsonic flow at zero angle of attack is
converted into a uniformly velid second spproximation by the rule

nn 4 2
TG [F ] e

Here Q(x/0,M) is the exact subsonic solution for a parebola. It can, in
principle be found to any desired accuracy since the Janzen-Rayleigh
method is believed to converge for purely subsonic flows€ and, for axial
flow past & parabola, the flow is purely subsonic for any free-stream
Mach number less than unity. For practical purposes, the M*% approxime-
tion of equation (15) that is tabulated sbove will probably suffice. For
application to linearized theory, this rule reduces simply to

eo()(E o

which yields a uniformly valid first approximation.

This last rule actually applies as & first approximation to any
round-nosed alirfoll at the ideal angle of attack. Corresponding rules

SThese values have been verified by comparison with a more extensive
table of the coefficients occurrlng in equation (13) that was kindly
communicated by Prof. Imai.

€A convergence proof was reported in reference 13, but has never
been published. '
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for lifting and cambered alrfolls at other angles of attack can be derived
from the Janzen-Rayleigh solution for a parsbola with circulation.” This
can be extracted to order M2 from existing solutions for inclined
ellipses; however, these solutions have not yet been carried as far as

the M* terms, which are the first to involve 7 &and are probably
important for numerical accuracy.

The pressure coefficient must be calculated from the velocities
according to the full Bernoulli equation for isentropic flow:

O (e

SHARP~-NOSED AIRFOILS

Y
—
Y -1

Aside from round noses, sharp edges with finite vertex angle arise
most commonly in practice. At sharp edges, thin-airfoil theory predicts
logarithmically infinite velocities in place of stagnation points and,
for the circulatory component, predicts a leading-edge singularity that
exceeds its actual strength. From a practical point of view, it is
probably worthwhile to correct these shortcomings only at sharp leading
edges because at trailing edges the details will ordinarily be masked
by viscous effects. In any case, the correction is significant over a
much smeller region for a sharp edge than for a round one.

Consider first incompressible flow past & sharp-nosed symmetrical
airfoll at zero angle of attack (sketch (e)). Clearly the flow in the

/’,,- ~Q immediate vieinity of the nose is
/ like the flow in an angle.® By con-~
) / S\ formel mepping, or separation of
'2;'{1§I::::::::> x) variables in polar coordinates, the
. \ , Bsurface speed is found to be given
\ ;o
N s 5
Sketch (e) g = ex™ (18)

TBecause of the nonlinear nature of compressible flow, here the
"ideal” and circulstory components can no longer be treated separately,
which somewhat complicetes the rules. Even in incompressible flow, if the
two components are treated together, there results instead of equation (3b)
an alternative rule that is more complicated but, of course, entirely equi-
valent up to terms of second order. In perticular, this alternative rule
requires that the coefficient k of equations (4) and (5) be known. Hence,
in the rule for subsonlc flow at other angles of attack than the ideal, it
will be necessary to determine k as the limit of the coefficlent of x-1/2
in the thin-ailrfoil solution as the airfoll thickness ratio vanishes
(corresponding to transition to a true parabola near thé nose).

8See reference 14 for a rigorous discussion of this point.
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where & is the semivertex angle. In fixing the constant ¢, the diffi-
culty that in the angle flow the velocity increases indefinlitely upstrean
can be circumvented by requiring that at any point the velocity must
approach that of the free stream as the angle & +tends to zero. Thus,
it is seen that ¢ is unity except for terms of order 8.

The connection with thin-airfoil theory follows from the fact that
for small ¥

xv=eVl°gx=1+Vlogx+%vzlog2x+... (19)

though not uniformly neer x = O. Hence, the thin-airfoil series for
flow iIn an angle is, to second order,

2
= CEL + g-log x + EE log x + l-log2 %)] (20)
T 2

cha

and it is clear how the spurious logarithmiec singularities arise.

Comparing these expressions gives a rule that renders the second-
order thin-airfoill solution for any sharp-nosed profile uniformly valid:

- s}

— n.n 1t
4o , n-5| % 5 "a 52 1.2
T = Xﬂ |: T X T log x - ;—2- log x - 5 log= x (213)

The corresponding first-order rule is

1m ..

- S
9, ~—=/'d d
= = P 5(-__U - = log x) (21b)

These rules, unlike those for round noses, can be extended to indefinitely
high order simply by retaining more terms in equation (20). The reason
for this is that the region of nonuniformity is exponentially small, so
that the shape of the profile (if it is composed of analytic arcs) enters
only through its initial angle.

The second of these rules applies
as a first approximation to any sharp-
nosed airfoil at its ldeal angle of
attack. At other angles the flow
includes a circulatory component, which
behaves near the edge like that around
the angle shown in sketch (f). For this
component, conformal maepping glves the
surface speed &s

Sketch (f)
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71=-20
q —
I-I:iksinaoxz(“"a):iik——s-i—n-—g <l+6logx+...> (22)
X

The constant k, which need not be identified, 1s of order unity, so
that logarithmic terms arise in thin-airfoll theory only in the terms of
second order in a5 and 8. The rule for correcting this circulatory
component is, to first order,

- ——5'— n_1
_q_.[;'_ = 2(ﬂ—5) _,T_ (23&)
and to second order
- " 5 1.1 1 11
T = =) (juz— - 5 5 108 X> (23p)

Note that according to thin-airfoil theory, the circulatory component
involves speeds with an inverse square-root singularity, the actual sin-
gularity belng slightly weaker. Here the rules, in contrast to those for
round noses, are different for the two components. Hence, the thin-
airfoil solution must be treated by splitting off the terms which are
singular at least as x'l/z, applying equation (23) to this circulatory
component, and then applying equation (21) to the remainder.

It is clear that corners on a profile elsewhere than at the leading
or tralling edges will lead to logsrithmic singularities in thin-airfoil
theory that can, for incompressible flow, be treated by & modification of
thls procedure.

At subsonic speeds, the flow at the ideal angle of attack could be
treated by considering the Janzen-Reyleigh solution for flow in an angle
(which has'not yet been calculated). However, at other angles the Janzen-
ities that are tolersable only in an incompressible fluid. The present
comparison method could be applied only if a truly transonic solution
were known for an inclined wedge. . -

COMBINED EDGES; AN EXAMPLE

The rules derived above for a single edge at the origin can clearly
be combined to treat leading and trailing edges together. In order to
use the previous results directly it is essentlal, as Lighthill has
pointed out, that the x axis be chosen to pass through both edges. It
is also essential to bear in mind the multiplicative nature of the rules.
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Thus, consider incompressible flow past an airfoill with round lead-
ing end trailing edges of radii pg and pp located (without loss of gen-
erality) at x = -1 and x = 1, respectively. Applying equation (3a)
twice, identifying x successively with (x + 1) and (1 - x), and then
simplifying to keep no more than second-order terms (recalling that the
p are of second order) gives

1/2

1 - %2 (“qé’ 1 0 1 obx>
1 T *ITErxtiTon/ (Y

- 1
1-x2+ SPe(l- %) + Spp(l+ x)

calay
It

(Note that the simplification has included dropping a term PgP, /4 in

the denominator of the radical, since its contribution can be shown to be
of higher order.) This rule converts the second-order thin-airfoil solu-
tion into & uniformly valid second approximation (in the sense discussed
previously) for asirfoils whose initial and finsl camber is zero, but glves
only e first approximation near a cambered edge.

In the same way the previous rules can be combined for higher approx-
imations and for any combination of round and sharp edges.

As an application of the rule for combined round edges, consider
incompressible flow past an ellipse of thickness ratio € at zero angle
of atfack. The formal second-order solution for surface speed is

““— l x2
T clre-ze (25)

Applying the rule of equation (2L), with £ = Pp= €2, gives

= 1/2
Q=

end it is satisfying to see that aside from the radical, the expression
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has been simplified. This result is compared in sketch (g) with the

L5

10 /

—— Exact
----- Linearized theory
-—=-= Second-order theory
© Corrécled second-order fheory

0 30 60 80
6, deg

Sketch (g)

exact solution and with the formal first—_and second~order solutions for
an ellipse of thickness ratio € = 3/10.

APPLICATION TO FINITE WINGS

The edges of a finite wing are described as subsonic or supersonic
according as, the component of free-stream velocity normal to them is
subsonic or supersonic. At subsonic edges thin-wing theory breaks dowvn
Just as it does for. two-dimensional airfoils in subsonic flow.® These
defects can be corrécted by applying the preceding rules to the components
of veldbcity in the plane normal to the edge; for, as noted by R. T. Jones
(ref. 2), for sufficiently thin wings, the flow field in the immediate
vicinity of the edge is cylindrical (if the plan form and edge radius are
continuous) according to the simple sweepback concept. Since thin-wing

®Thin-wing theory fails also at round supersonic edges. This defect
could probably bte corrected by comparing with the solution for supersonic
flow past a parabola, which has not yet been calculated.
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theory is a series expansion in powers of thickness, its coefficients
can be evaluated at vanishing thickness. Hence, the sweepback prineciple
applies here to any order. )

As an example, consider supersonic flow past a flat elliptic cone
lying inside the free-stream Mach cone. The linearized thin-wing solution,
first given by Squire (ref. 15), predicts constant pressure over the entire
surface. Hurley has attempted to improve this result near the leading
edges by adding, along the foci of the ellipse, conical line sources whose
strength is determined by imposing the exact tangency condition at the
leading edge (ref. 16). He has verified that the resulting shape is
approximately the desired one, though somewhat sharper near the leading
edge. For the thickest wing that.he considered, Hurley!s pressure dis-
tribution is compared in sketch (h) with the first-order result of the
rresent method. The present solution is presumably more accurate since
the shape is not distorted and compressibility effects are accounted for
more exactly.

4

--+- [Linearized theory
- — — MHurley (ref. /6)
tan” .15 ° —— Present method

% 30 60 S0
4, deg

Sketch (h)
BODIES OF REVOLUTION

For bodies of revolution, the counterpart of thin-wing theory is
the slender-body theory introduced by Munk for the crossflow due to angle
of attack, and later extended to cover also the flow at zero angle. For
subsonic speeds this theory, too, fails near stagnation points, where it
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predicts infinite rather than zero speeds. Furthermore, for the crossflow
1t predicts & nonexistent singularity at round ends and fails to predict
an actual singularity at sharp ends. It can be corrected by simple rules
quite analogous to those already given for wings. Only incompressible
flow will be considered here, the extension to subsonic speeds requiring
the solution for simple nose shapes asccording to the Janzen-Rayleigh
method or otherwise. '

oo

Wi

i

Any round-nosed body of revolution can be approximated near its nose -
by a paraboloid of revolution. Munk®s rule gives the remarkable result
thet the surface speeds for axial flow are identical on parsebolas and
paraboloids of revolution, and that the additional velocities due to angle
of attack are proportional. Hence, Lightﬁill's rule for round-nosed air-
foils, equation (3b), applies also to bodies of revolution. It yields,
however, only a filrst approximation because the disturbances, being
smaller than for airfoils, are of the order of the nose radius (i.e., of
order ¢2) rather thHen of order €. A second-order rule can be obtained
by fitting the nose more accurately with an ellipsoid of revolution.
Again, Munk'!s rule shows that the speed distributions are proportional
on ellipses and ellipsoids of revolution of the same thickness ratio.
Hence, the fourth-order rule for airfoils, equation (11), is the second- =
order rule for round-nosed bodies of revolution.

I, lilL.

For sharp-nosed bodies, the nature of the flow near the tip can be -
found by introducing spherical polar coordinates (sketch (1)). Separating _
variagbles leads to a solution in - .
@ % terms of Legendre functions for the
"“\(A ’;r,/”’ axial flow and assoclated Legendre

\ ///// 2 functions for the crossflow, the _

\ functions being of nonintegral order. _ _
Requiring, as in plane flow, that :
Aﬂ the solution reduce to & uniform

stream as the cone angle O venishes
shows that on the surface in the
immediate vicinity of the tip the

Sketch (1) radial velocity component has the form
%? =c cos a X8t + k sin o cdos w xP7t (2Ta)

and the agimuthal component, the form . : —

*}
T? = -k gin a sin w x°272 (27)

Here, again, c 1is a constant that is unity to first order and k 1is a
constant of order unity. The tangency condition requires that m and n
be the first roots of
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i
o

Py’ [cos(n - 8)1
(28s)
Pn}'[cos(n - 3}]

i
(@)

where the derivatives of the Legendre functions are considered as func-
tions of m and n. Methods for calculating these roots numerically have
been discussed by Pal (ref. 17) and by Siegel et al. (ref. 18). Using
a formula due to Schelkunoff (ref. 19), it can be shown that to a first
approximation for small cone angle 8

m=1+=25%2 4+ 0(5* 1og B)
(28b)
n=1- % 82 + 0(3* log B)

Since n - 1 is slightly negative, the velocities associated with the
crossflow are only weakly infinite at the tip, in contrast to the nearly
inverse square-root singularity associated with angle of attack for a
sharp-nosed airfoil.

Expanding equation (27a) according to equation (19) leads again to
rules for correcting slender-body theory. As in plane flow, the axial
flow and crossflow must be treated separately. The rule for correcting
the axial component is found to be, to first order,

d1 A
- =x "'U—"'-§82108X> (29a)

This could be extended to second order by determining the next term in the
series for m. The rule for correcting either the radial or azimuthal
component of velocity assoclated with the crossflow is, to second order,

5-2 _ Jn=1 (1‘9.2 1l a2 ' )
= =X = +-é-8 log x (29pb)

The corresponding first-order rule is the same without the logarithmic
term.
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ALTERNATIVE FORMS OF RULES FOR ROUND NOSES

1/2
The radical <—x_/_2-> appearing in the rules for round noses in
X + P _
incompressible flow is, for a parabola or parsbolold, the cosine of the
surface angle 1 measured from the x eaxis. Therefore, the first-order

rule for airfoils, equation (8), can be written alternatively as

- P L
L - cos q ( %; = I 4 (30)
U 1+ tan2n U
and this is Riegels! rule (ref. 9). Aside from its simplicity, it has an
unexpected advantage over Lighthill'’s form. _The two rules differ only by
higher-order terms for shapes other than a parabola, so that there is no
a priori reason to prefer either. However, it happens that Riegels'! form
gives the exsct result for an ellipse as well as for a para.'bola,lO whereas
Lighthill's does not. Since alrfoil profiles ordinarily resemble ellipses
more than parabolas, Riegels' form might be expected to be more accurate,
and this appears to be the case. For example, sketch (Jj) shows that
Riegels' rule gives a much more accurate first-order solution than
Lighthill's for an NACA 0012 airfoil at zero angle of attack.

L3 7

. q

S U
L2 o —_— NAGA 002 —

//“L\\o\\\
~

/ Ny

L/

Sl

——  Exact (ref. 8)

e « - - Linearized theory . \\St,
Lo

— ——  First ordsr, Lighthill's rule

o First order, Risgals' rule
\
9
(7] 2 4 6 .8 to
Fraction of chord
Sketch (J)

10Tnig is clear from Munk's rule (together with the fact that line-
arized theory predicts a constent speed on an ellipse that is equal to
the true maximum value).
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Despite its simplicity and remarkable accuracy, however, Riegels!
rule must be regarded as less basic than Lighthill!s from a theoretical:
point of view. Only Lighthill's rule can, in principle, be extended to
indefinitely high order, to subsonic speeds, or to other nose shapes.

A further defect of Riegels! rule is that the nose exerts a spurious
influence even at remote points if the local airfoil slope is apprecisble.-
To this extent it fails to render the solution uniformly valid.

Nevertheless, the practical advantages of Riegels! rule are so great
as to suggest artificially modifying the higher-order rules accordingly.
Thus, Lighthill's second-order rulé for uncembered airfoils, equation (3b),
can be rewritten by analogy with Riegels! rule as

- 1t
2 2 1
= = cos n< = +§tan2 n) (31)

Both forms are so accurate that graphical comparison is scarcely possible.
Instead, they are compared in the following teble with the exact values
for a lhi-percent-thick symmetrical Joukowski airfoil at zero angle of
attack:

Fraction { Second order, | Second order, Exact
of chord Lighthill alternative | (ref. 20)
0.005 0.7530 0.7363 0.7379
.0075 .8590 .84ko .8hhg
.0125 .9852 9748 .9738
.025 1l.12k9 1.1226 1.1190
05 1.2137 1.2185 l.2132
.10 1.2489 1.2568 1.252L4

The superiority of the alternative form is now confined to the immediste
viecinity of the nose (which has a radius of 0.023 chord). Similarly, for
cambered airfoils, the second-order rule can be recast in the form

- "q"
ds -2
5 = cos(n - k) [- 5

where Kk 1s the initial angle of the camber line; and comparison with
its counterpart in equation (10) illustrates the greater simplicity of
the alternative forms, which is perhaps their chief virtue in the higher-
order approximations.

+  tan®(n - nﬂ (32)

Agaln, both these rules are exact for ellipses, whereas their pfe-
decessors are not. Since this is so, the fourth-order rule (which results
from considering ellipses) is obtained simply by retaining another term
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in the formal series expansion of the cosine. - For initially uncambered
airfoils this leads to

— n_n n_n
s _ e 1 %2 pon2 oL ogane
5 = cos q( T t5TTo et n -3 tan? 1 (33)

and 1t can be verified that up to terms of fourth order this agrees with
the less compact form of equation (11). The corresponding rule for
cambered alrfoils is

w1 it

q 1 "q | 1
= = cos(n - k)|~ + 5 -5 tan®(n - k) - 5 tan®(n - K)J (3k)

For round-nosed bodies of revolution, equation (31) is the first-
order rule and equation (33) the second-order rule. These are exact for
ellipsoide of revolution as well as parsboloids. It can therefore be
anticipated that they will be generelly more accurate than the previous
forms.

The rule for subsonic speeds can also be artificially manipulated
in an attempt to preserve the advantages of Riegels' rule. Thus, equa-
tion (16a) is replaced by

Eia - uqn 1 M2 1M
"ﬁ':Q(")[ = +.2-<1+E§+Z—1;—-B—>tan2 Tl] (35)

where Q(n) is the subsonic speed. ratio on a parsbola expressed in terms
of the surface angle 7. It is related to the function @Q(x/p) of equa-
tions (15) by

¥n) = a5 cot? n) (36)

because for & parsbols p/x = 2 tan® n. This rule differs from its pre-
decessor only by higher-order terms and 1s designed to reduce to egua-
tion (31) at zero Mach number. '

Ames Aeronautical Laboratory
Netional Advisory Committee for Aeronautics
Moffett Field, Calif., Aug. 16, 195k
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APPENDIX
SYMBOLS
Cp pressure coefficient (pressure increment divided by free-
stream dynamic pressure)
Ci initial slope of camber line divided by €
c coefficient that is unity to first order
FO, Fiv, o« « o coefficients in expansion of airfoil thickness

Posf1,f0,1fg coefficients of Janzen-Raylelgh expansion for @

k coefficient of order unity

M free-stream Mach number

m first root of Pp'[cos(nx - 8)] = 0, where Pp(cos 8) is
the Legendre function

n first root of Ppi'[cos(n - 8)] = 0, where Pp*(cos 8) is
the associated Legendre function

1] speed ratio on parabola in subsonlc axial flow as function
of x/p

a speed ratio on parabola in subsonic axial flow as function

of surface angle 1

q speed at body surface
a uniformly valid approximation to ¢
“q" formal thin-wing or slender-body solution for ¢

QrsQpy » o first-order, second-order, etc., approximation to q

U free-stream speed
u component of surface velocity in x direction
X coordinate along airfoil chord or body axis, usually

measured from edge
¥ coordinate of airfolil surface perpendicular to chord
a angle of attack

o angle of attack measured from ideal angle
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B (1 - u3)1/2

v adigbatic exponent of gas

o) semlvertex angle of pointed airfoill or body
€ thickness parameter of airfoil

1 surface angle measured from x axls

e polar angle

K initial angle of camber line

A (see eq. (11))

o] edge radius of round-ended airfoil or body

w azimuthal angle
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